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A B S T R A C T   

The increasing frequency of extreme weather events poses ever greater challenges to urban resilience and res
idents’ quality of life. Despite a growing trend advocating for an anthropocentric approach to urban resilience, 
there remains an inadequate understanding of the evolving hierarchical needs of residents during post-disaster 
periods, especially considering the interplay with infrastructure service restoration. This study aims to address 
the gap by elucidating how emergency governance and urban infrastructure repairs can effectively address 
critical residents’ needs, providing empirical insights for improved resource allocation in infrastructure rush- 
repair scenarios. First, we categorize residents’ needs into three layers (safety and health, social livelihood 
and civic engagement) using Latent Dirichlet Allocation topic modeling. Subsequently, we present an urban 
resilience assessment framework that traces the recovery of residents’ needs alongside dynamic infrastructural 
functionality restoration, benchmarking against pre-disaster levels. Additionally, hypernetwork analyses are 
adopted to identify critical and evolving patterns of residents’ post-disaster needs over time. The robustness of 
our proposed framework is validated through its application to a dataset comprising 220,567 records from 
residents’ appeals during three recurrent rainfall events in Beijing. Theoretically, this study models the dynamic 
interactions between residents’ needs and infrastructure response during urban post-disaster recovery. Practi
cally, the pinpointed critical needs guide efficient infrastructure rush-repairs and proactive disaster prevention in 
infrastructure maintenance.   

1. Introduction 

Urban areas worldwide are witnessing an alarming increase in pre
cipitation trends, a phenomenon exacerbated by climate change and 
urbanization, culminating in frequent and intense rainstorms with se
vere socio-economic implications and environmental damage (Zheng 
et al., 2015; Salimi & Al-Ghamdi, 2020; Tabari, 2020). For instance, in 
2021, Zhengzhou in China endured rainstorms, leading to over 380 fa
talities and 40 billion RMB in damages. Similarly, a rainfall that per
sisted for over 20 days in Germany claimed the lives of 160 individuals. 
In 2023, California experienced heavy rainfall, resulting in nearly 1 
million people evacuation. Recently, an unprecedented rainstorm struck 
Beijing on July 29th, 2023, affecting more than 1.31 million residents. 
The serious causalities and economic loss caused by increasingly 
frequent and intense rainstorm events highlight the urgency for urban 

resilience study (Meerow et al., 2016; Meerow & Newell, 2019; Wang 
et al., 2020). 

Urban resilience is used to describe “the ability of a city to maintain 
the effects of disruptions when they occur, to carry out recovery activ
ities, and to adapt to the desired functions” (Holling, 1973; Campanella, 
2006; Elmqvist et al., 2019). A human-centric perspective is widely 
acknowledged in emergency governance and urban infrastructure re
pairs during post-disaster periods. This necessitates a comprehensive 
understanding of the hierarchy and dynamics of residents’ needs to 
better synergize infrastructural repair recovery and address critical 
residents’ needs (Shekhar et al., 2019; Podesta et al., 2021). However, 
the current understanding of which services are most pressing to resi
dents’ needs and how these needs evolve over time remain unclear. 
Although some conceptual frameworks have been proposed by previous 
scholars to model residents’ needs during post-disaster recovery (Stokols 
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et al., 2013; Zhao et al., 2022; Pan et al., 2022; Ye et al., 2023), these 
frameworks often rely on static indicators with fixed time spans, making 
them incapable of modelling the evolving nature of residents’ needs and 
the influence of recurrent disaster events (Roy et al., 2019; 
Muñoz-Erickson et al., 2021; Yang et al., 2023). 

This study introduces new methodologies and insights to capture the 
temporal fluctuations in residents’ needs and how infrastructural repair 
responses impact overall urban resilience performance. These findings 
aim to contribute to an improved dynamic interaction between resi
dents’ satisfaction and infrastructural functionality, thus directly 
enhancing residents’ quality of life during post-disaster periods (Dargin 
& Mostafavi, 2020; Kong et al., 2023). The novelties and contributions 
of the study are summarized as follows: 

(1) This study constructs a multi-layered model of post-disaster res
idents’ needs using empirical data-driven methods, which offers valu
able guidance on adaptive resource reallocation during infrastructural 
rush-pair to effectively respond to residents’ hierarchical needs. 

(2) This study introduces a quantitative model to capture the dy
namic interplay between residents’ needs satisfaction and the recovery 
of infrastructural functionality. This model serves as a guiding frame
work for the restoration of essential infrastructural services, considering 
the dynamic resolution of post-disaster residents’ needs over time. 

(3) A normalized residents’ needs satisfaction degree was proposed 
as a metric to assess urban resilience performance. This novel approach 
not only enhances the utility and generalizability of the evaluation 
framework but also provides a tangible and standardized measure. The 
robustness of our proposed framework is validated through its applica
tion to the extreme rainfall event in Beijing on July 29, 2023, providing 
empirical support for its effectiveness. 

(4) Leveraging hyperedge network analysis, our study reveals critical 
and evolving patterns in residents’ needs during post-disaster periods. 
This analytical approach provides proactive insights for repair man
agement, aiding in the formulation of strategies for preventive or timely 
infrastructural interventions in response to residents’ evolving needs. 

2. Literature review 

2.1. Hierarchical residents’ needs during disaster recovery and access 
sources 

Recent paradigm shifts towards a human-centric perspective in 
urban resilience assessment places an increased emphasis on prioritizing 
residents’ needs and overall quality of life (Tanner et al., 2014; Pan 
et al., 2022). This orientation aligns closely with global framework like 
the Sustainable Development Goals and the New Urban Agenda (The 
United Nations, 2015; Li et al., 2023). Infrastructural routine mainte
nance and post-disaster rush-repair are all expected to prioritize the 
satisfaction of residents’ needs, in both perceptual and tangible service 
supply (Diener et al., 2018; Chester et al., 2021). 

The complexity arises from the intricate and subtle nature of resi
dents’ needs juxtaposed with the constraints of limited infrastructural 
repair resources (Zhao et al., 2022). Drawing inspiration from Maslow’s 
human motivation theory (Maslow, 1943), Pan et al. (2022) proposed a 
hierarchical structure of residents’ needs post-disaster, including sur
vival needs, safety and health needs, and extending to social life and 
spiritual well-being. While this conceptual framework provides an initial 
understanding of residents’ needs, the empirical manifestation of these 
needs from bottom-up communication channels remains unclear. 
Existing studies, such as Wang (2020) modelling spatial-temporal pat
terns of public responses to urban flooding based on social media data 
and Podesta et al. (2021) quantifying post-disaster public activity vari
ations using digital trace data, offer valuable insights. However, they are 
limited by the skewed demographics of social media users and the 
inability to track if residents’ needs are adequately responded to and 
addressed. 

In addressing this gap, our study leverages residents’ appeals records 

data to provide a full-circle solution. Unlike indirect data sources, resi
dents’ appeals records offer critical feedback on overarching urban is
sues, providing insights not only into identifying residents’ needs but 
also understanding the resolution processes. This approach ensures 
alignment with the genuine needs and concerns of the community 
during disaster recovery. Building on successful applications of city 
informatics in previous studies, such as Wu (2020) analyzing 311 system 
users’ behavior and Peng et al. (2020) categorizing urban issues for 
appropriate municipal department responses using urban hotline data, 
our study extends the utility of residents’ appeals records during disaster 
recovery. We employ this data to capture emergence and resolution 
information directly from residents, enabling the clustering of their 
needs. This methodological advancement addresses the limitations of 
previous approaches and offers a more nuanced and direct under
standing of the evolving hierarchy of residents’ needs during the intri
cate phases of disaster recovery. 

2.2. Measuring urban resilience through urban performance curves 

Urban performance curve, often modelled as an assessment and 
diagnosis tool, relies on established standardized indicators for city 
services. This includes indicators for quality of life as per ISO 37120 
(2018) and indicators for resilient cities outlined in ISO 37123 (2019), 
endorsed by the International Organization for Standardization (ISO). 
These metrics serve as fundamental gauges in evaluating city service
ability and reflecting residents’ livelihoods, particularly in post-disaster 
scenarios (Marans, 2015; Wey & Huang, 2018; Mouratidis, 2021; 
McClymont et al., 2022; Giulia, 2023). Residents’ satisfaction, viewed as 
the ultimate milestone, effectively mirrors changes in post-disaster 
urban life quality, closely connected to urban services and resource 
allocation (Gilbert et al., 2015; Hayashi & Suzuki, 2016; Pan et al., 2022; 
Zhao et al., 2022). Despite its prominence, the existing methodologies 
and frameworks in quantifying urban resilience through urban perfor
mance curves reveal notable gaps. 

Performance based methods are introduced by Bruneau et al. (2003) 
to model urban resilience. Further refinement to standardize the time 
scale are made by Henry and Emmanuel (2012); Cimellaro et al. (2016) 
to enhance performance measurement. A critical parameter for resil
ience is identified as the area under the system’s performance curve over 
time (Zhao et al., 2018; Pan et al., 2022). Despite the new perspective, 
the simplification of system performance curves into straight lines based 
on varying layers of need indicators poses challenges in compromising 
the dynamic nature of need evolution, impacting the precision of resil
ience assessment, particularly in the context of multi-wave disruptions. 

Addressing this gap, a more nuanced understanding of the evolution 
of needs is crucial for depicting the urban performance curve and 
accurately assessing resilience during complex, multi-phase disruptions. 
Noteworthy innovations by Kontokosta and Malik (2018) and Podesta 
et al. (2021) introduce the normalization of the urban performance 
curve by setting pre-disaster human activities as the standard for the 
desired performance. By comparing the urban performance curve to 
pre-disaster levels, this approach allows for normalization, facilitating a 
more precise calculation of resilience (Hong et al., 2021; Liu et al., 
2023). However, despite these advancements, challenges persist in 
reconciling evolving needs with performance-based assessments. 

Our research aims to bridge these gaps by incorporating a more so
phisticated understanding of the dynamic evolution of needs during 
multi-wave disruptions to provide a more accurate depiction of urban 
performance curves. This approach will contribute to a nuanced and 
context-specific assessment of urban resilience, addressing the limita
tions observed in existing methodologies and setting the stage for more 
robust urban planning and policy interventions. 

2.3. Networking analysis to model system dynamics in urban resilience 

In post-disaster scenarios, the intricate connections between the 
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urban infrastructure network and its ability in meeting residents’ needs 
significantly influence overall urban resilience (Yuan et al., 2021). 
Previous studies have ventured into understanding the interplay be
tween residents’ satisfaction degree and various infrastructural systems. 
Network methods have been employed to uncover dependencies, vul
nerabilities and critical components within different sub-systems. For 
example, Jayaram and Srinivasan (2008) applied network topology to 
model water distribution networks and measure network reliability by 
network-based surrogate metrics. Hartmann (2014) identified key nodes 
and includes critical links to the urban resilience. Huang and Ling 
(2018) utilized analytical network process to measure resilience in 
confronting various disruptions. However, these network analysis 
methods, primarily designed for pairwise connections, reveal limitations 
when applied to the intricate relationships within the triad of residents’ 
satisfaction, infrastructural system functionality, and urban resilience 
performance. 

Furthermore, traditional network analysis, especially those applied 
to the social dimension, often confine themselves to homogeneous nodes 
or sub-urban systems, restricting their ability to comprehensively cap
ture broader social and human aspects of urban resilience. Notable 
studies such as Campbell et al. (1976) and McCrea (2007) have explored 
the linkages between objective attributes of life domains and satisfac
tion, as well as integrated model of quality of life into urban physical and 
social environments, respectively. Despite these efforts, gaps persist in 
effectively representing the intricate relationships within the urban 
fabric. 

Our proposed innovation lies in the development of a hypernetwork 
capable of effectively capturing these complex relationships. Utilizing 
hyperedges, this approach enables rapid cooperation and resource 
sharing among the different layers of the network (Feng et al., 2019; Gao 
et al., 2023). Hyperedges accommodate heterogenous relationships and 
other complex characteristics that go beyond the scope of pairwise 
connections. This departure from aggregation or equally weighted 
methods provides a promising perspective for resilience assessment. 
Hyperedge analysis can also offer a nuanced understanding of collective 
reflections on urban resilience by capturing and identifying critical 
linkages indispensable for urban overall resilience. Therefore, by 
addressing the limitations of traditional network analysis methods and 
introducing the concept of hypernetworks, our research aims to provide 
a more holistic and dynamic representation of the relationships between 
residents’ needs and infrastructural functionality during post-disaster 
periods. This innovation is not only a methodological advancement 
but also a strategic move towards a more comprehensive understanding 
of urban resilience. 

3. Methodology 

Owing to the exploratory and analytical nature of this study, a 
combination of qualitative and quantitative methods was adopted to 
analyze residents’ needs oriented urban resilience. The research 
approach involves the development of a residents’ needs hierarchy 
framework. Subsequently, the study quantifies urban resilience across 
three rainstorms events, utilizing residents’ satisfaction degree as a 
metric to measure urban performance. To further investigate the dy
namics of changes in residents’ needs and the influence of infra
structural elements underpinning urban resilience, a hypernetwork 
modeling and hyperedge analysis are conducted. The workflow of this 
study is illustrated in Fig. 3.1. 

3.1. Data sources and case study 

Residents’ appeals records data, administered by the municipal 
government, serve as the primary platform for collecting residents’ 
concerns and providing timely feedback in response. This study com
bined multiple comprehensive sets of residents’ appeals records data, 
including "12345" citizen hotline, "12369" and "12320" service data, as 
well as Sina Weibo and WeChat reports, all focusing on hazard-related 
issues. 

The data were obtained from the municipal government for this 
study from July 1 to August 1 in 2021. The hotline received 220,567 
requests data related to urban infrastructure issues directly caused by 
rainstorms, as reported by residents. Each data record is structured to 
contain the dispatch time of the report, resolution time of the issue, 
detailed descriptions, associated locations, handling departments, and 
outcomes of the process. Specifically, the residents’ private information 
was encrypted and anonymized. 

The case involved collecting residents’ appeals records and feedback 
data following rainstorms in Beijing, China, to test the research frame
work. Starting July 12, 2021, Beijing experienced successive rainstorm 
events for several weeks, greatly affecting the lives of its 21 million 
residents. In response to the disaster, the municipal government issued 
multiple red flag flood warnings, setting the warning level to its highest. 
In this flood season, with a total precipitation of 627.4 mm, the rain
storms set a new record for the city, surpassing records dating back to 
1951. Compared to the average seasonal precipitation of 373 mm, there 
was a notable 70 % increase (The People’s Government of Beijing City, 
2021). 

3.2. Clustering residents’ needs using LDA during rainstorm recovery 

Topic models are a type of statistical modeling method for 

Fig. 3.1. Workflow of this study.  

Z. Zhao et al.                                                                                                                                                                                                                                    

https://www.sciencedirect.com/topics/engineering/network-topology


Sustainable Cities and Society 106 (2024) 105366

4

discovering the “topics” that are hidden in large amounts of data (Oli
veira Capela et al., 2019). Latent Dirichlet Allocation (LDA) modeling, a 
widely adopted generative probabilistic model for topic extraction was 
used to analyze large corpus of documents (Blei et al., 2003). In recent 
years, the LDA model has gained attention in urban studies, particularly 
for classifying urban activities (Bi & Ye, 2021; Zhao et al., 2023), 
responding to emergencies (Yao & Wang, 2020), and analyzing infra
structure resilience (Urquiza et al., 2021). As an unsupervised machine 
learning technique, LDA is a powerful tool to generate the probability 
distributions of latent topics from the distribution of words in each 
document. 

The LDA model is based on the Bag of Words (BoW) algorithm, for a 
document, BoW starts by identifying all the different tokens that exist in 
it and considers each document as a vector of word frequencies. Each 
document is represented as a probability distribution over various 
topics, where each topic is in turn a distribution over terms. During topic 
clustering, LDA extracting features from text and assigns topics to each 
document. The request data were extracted from citizen database 
directly impacted by the rainstorms. In more detail, Fig. 3.2 illustrates 
the analysis process of need patterns. The specific LDA topic generation 
process can be discussed as: a) For each resident’s request document in 
the total term label, select a distribution term pattern θd~Dirichlet(α). b) 
For each term in residents’ request d, select a pattern z~Multinomial 
(θd), z∈{1,…,K}, and for each topic k∈{1,…,K},select a need term dis
tribution ϕk~Dirichlet(β). c)generate the new term label w~Multino
mial(ϕz). In a document, the probability of the word will appear: 

p(w|d) =
∑K

k=1
p(w|z= k,ϕk)p(z= k|θd)

Here, w indicates the frequency of word in each resident’s request 
document d, while z denotes the topic k in document d. The parameter 
θd, ϕk indicate the distribution from the Dirichlet distribution with 
hyperparameters α, β, respectively. 

The data analysis process is outlined in Fig. 3.3, including data 
gathering, data processing, model training, and topic visualization. For 
visualizing the topics patterns extracted from our dataset, we utilized 
PyLDAvis, where circles represent extracted residents’ needs topics, and 
circle size indicates their significance. The panel provides information 
on relevant terms and frequencies, and the optimal topic count is 
determined by comparing inter-topic distance maps. Residents’ needs 
are divided into different layers based on urgency and significance in the 
rainstorm recovery stage. This prioritization aids emergency manage
ment in identifying and addressing the most critical needs, enhancing 
disaster recovery efficiency. 

3.3. Residents’ needs evolution and urban performance curve 

Based on the identified residents’ needs during rainstorm recovery, 
the study further quantifies the needs’ evolution features through 
infrastructure capabilities and demands of the population during the 
recovery phase. Understanding the interplay between infrastructure 
responses and residents’ needs during recovery is crucial for urban post- 
disaster resource allocation. If the infrastructure fails to deliver required 
services after disasters, residents will experience unmet needs, leading 
to a decline in urban performance which are positively correlated with 
the rise of the unsatisfied needs. The calculation follows two assump
tions: first, each request among filtered items independently contributes 
to the cumulative performance index, despite the potential influence of 
other needs; Second, satisfying one need does not affect other needs to 
be satisfied. 

The evolution of residents’ needs within this study is illustrated 
through the Urban Performance Curve, which delineates the varying 
service capacities of infrastructure systems and their relationship to 
meeting residents’ needs. The Urban Performance Curve is determined 
through a two-step quantification process that assesses the degree to 
which key needs are met. 

1) Category residents’ Needs. This step involves categorized resi
dents’ needs and layers according to different infrastructure services 
through the request data. The post-disaster service and capability impact 
the satisfaction of needs. 

2) Quantify each type of residents’ needs. Calculate the daily 
unmet volume for each demand type using the feedback data described 
in Section 3.1. This feedback data encompasses needs emergence and 
resolution, thereby enabling the tracking of the extent to which these 
needs are satisfied. 

3) Derive the urban performance curve. Each need category re
ceives a dynamic weight daily, based on the urgency determined by that 
day’s volume of unmet demand. The performance curve is derived by 
aggregating the weighted satisfaction scores of all need categories. 

4) Calculate the resilience. To calculate urban resilience, the 
methodology quantifies urban performance by integrating the area be
tween the post-disaster performance curve and the baseline. This base
line was quantified using data from residents’ appeals of each type of 
need before the disaster. For each identified shock, the study adjusts the 
baseline through the decomposition of the performance curve preceding 
the event and compute resilience. The resilience is calculated using the 
formula: 

R =

∫ t1
t0
(Baseline − P(t))dt

t1 − t0
× SR1 /SD1 × RD1 

Here, "R" denotes the resilience value; "Baseline" and "P(t)" represent 
performance over time "t"; "SR" is the slope of recovery; "SD" the slope of 

Fig. 3.2. The LDA topic generation process of residents’ needs.  
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decline; and "RD" the degree of recovery, respectively. This enables us to 
measure the cumulative impact and each system’s ability to return to its 
pre-disaster performance level facing overlapping disaster events. 

3.4. Infrastructural dynamic responses to residents’ needs in hyperedges 

The hypernetwork model integrates dynamic model and complex 
network model, adeptly processing cross-layer and interconnected data. 
First proposed by computer scientist Peter Denning in 2012, the 
hypernetwork shows its efficacy and excellent ability in various fields, 
including transportation, supply chain, and knowledge networks. This 
approach not only simulates urban recovery processes but also reveals 
interdependencies between residents’ needs and infrastructure re
sponses through modeling and simulation. Therefore, this study adopts 
the hypernetwork model to assess infrastructural dynamic responses to 
critical residents’ needs for resilience. 

Based on hypernetwork theory, this study constructed a model with 
three layers consisting of vertex sets and hyperedge sets. These layers 
represent residents’ needs, urban performance, and the built environ
ment. During the restoration process, the degree of residents’ needs 
satisfaction is influenced by urban performance. Additionally, urban 
performance is affected by infrastructure systems in the built environ
ment. The study developed a hypernetwork model encompassing the 
residents’ needs sub-network, urban response sub-network, and built 
environment sub-network, as depicted in Table 3.1. In this model, the 
residents’ needs sub-network is formed by clustering residents’ appeal 
data using LDA modeling. following the assessment of needs evolution, 
the urban response sub-network’s nodes are formed by the results of 
need satisfaction, as depicted by the urban performance curve. The built 
environment sub-network’s nodes comprise infrastructural response 
feedback data and engineering entities corresponding to each resident’s 
request. 

To facilitate the hypernetwork, our study utilizes hyperedges to 
connect heterogeneous elements across sub-networks, allowing the 

grouping of multiple nodes. Unlike traditional network analyses that 
prioritize critical nodes, hyperedges drives the evolution of residents’ 
needs and investigates the interplay between needs and infrastructural 
response during the restoration process. Data from each resident’s 
request, related feedback, and infrastructure responses within one 
document, creating a hyperedge between heterogeneous subnetworks. 
Records or documents, as the primary source of data from residents 
collected by government proxies such as social media, hotlines, or 
websites, yield hundreds of thousands of records following rainstorm 
disasters. 

The sequences of states and transitions are the system dynamics 
(Battiston et al., 2020). Using hyperedges, it becomes possible to model 
changing networks and their temporal dynamics. In a hypergraph, the 
state is represented by a hyperedge association matrix H, capturing the 
sub-network’s structure at a given time. State transitions in the hyper
graph occur with changes in the hyperedge, namely, when tokens are 
produced or consumed. This mirrors the evolution of needs influenced 
by the dynamic response of infrastructure during the recovery process. 
This study examines the dynamic temporal evolution of hypernetwork 
structures, focusing on growth and change patterns of hyperedges, by 
considering the static structures at various points and their dynamic 
evolution over time. 

1) hyperedge degree, similarity, and distance were used to track the 
intensity, patterns, and variations in hyperedge interactions. The 
hyperedge degree represents the number of non-orthogonal columns 
that correspond to the given hyperedge. The formula is as follows, 

Hyperedge degree =
∑|E|

j=1
sgn

(
∑|V|

k=1
hijhkj

)

=
∑|E|

j=1
sgn
(
HiHj

)

The hyperedge similarity measures the degree of similarity between 
the entities that a given hyperedge and others. The similarity in two 
hyperedges can be expressed as the cosine between vectors. The simi
larity between SEi and SEj is as follows, 

Hyperedge similarityj =

∑|V|

k=1hki × hkj
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑|V|

k=1hki
2
)

×
(∑|V|

k=1hkj
2
)√

Hyperedge distance characterizes the control of network flow be
tween node pairs along the shortest path. The distance between 
SEi and SEj is defined as the shortest path connecting the two hyper
edges through their common nodes. 

DISi =

∑|E|
j=1DIS

(
SEi,SEj

)

|E|

Fig. 3.3. Data processing of LDA Topic modeling.  

Table 3.1 
Networks and vertices in the hypernetwork model.  

Network Vertex Group 

Residents’ needs Needs Layers of residents’ needs 
Urban 

performance 
Functionality Serviceability of infrastructures 

Built 
environment 

Infrastructure 
systems 

Engineering elements of infrastructure 
systems  
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Where, the association matrix H is represented as |V| nodes × |E |

hyperedges. The row i corresponds to the i th node and the column 
j corresponds to the j th hyperedge. 

2) clustering and evolution coefficients were utilized to reflect fluc
tuations in migration levels of hyperedges during post-disaster recovery. 
Our temporal evolution analysis provides insight into the relationship 
between linked hyperedges and inherent attributes of the built envi
ronment from a temporal perspective. Overtime, new hyper-triangles 
emerge while old ones disappear. These transformations are captured 
by the evolution coefficient, which signifies alterations in the focal state. 
Additionally, the fluctuations in information stemming from changes in 
hyperedges offer valuable insights into the dynamics of the urban re
covery process. We employ the following equations to assess the 
robustness of connections within the hypernetwork (clustering coeffi
cient Ct) and explore changes in structural attributes (evolution coeffi
cient Et) driven by alterations of hyperedges: 

Ct =
6 × number of triangles

number of paths of length two  

Et =
6 ×

(
number of hyper triangles

)

t− 1

(number of paths of length two)t− 1

×
hyper trianglest + hyper trianglest− 1
(
number of hyper triangles

)

t 

Where, a hyper-triangle is defined as a sequence of three distinct 
vertices and hyperedges of the form. The clustering coefficient Ct as
sesses the robustness of connections within a hypernetwork, which can 
be determined by the fraction of nodes engaged in the creation of hyper- 
triangles. The computation is founded on the average transitivity coef
ficient calculation within the field of transfer science. Moreover, the 
evolution coefficient Et explores changes in the structural attributes 
driven by the alterations of hyperedges, aiming at restoring the satis
faction of residents’ needs. 

4. Results 

4.1. Hierarchical residents’ needs reflected in LDA topics 

To categorize residents’ needs during disaster recovery, data from 
three successive 18-day rainstorm events were selected. All of the data 
were directly related to or impacted by the disaster, and a total of 
220,567 data entries were chosen. The resident-generated data were 
processed as documents to create a document-word matrix, calculating 
the frequency of occurrence for various needs-related topics. Subse
quently, LDA topic modeling was applied to each infrastructure type, 
illustrated in Section 3.2, enabling the identification of distinct topics 
across various infrastructure systems. 

The study categorized eighteen needs indicators of various infra
structure systems: six were related to drainage and power supply sys
tems, eight were associated with transportation and water supply 
systems, and four covered areas such as communication and gas, as 
detailed in Table 4.1. Perplexity metrics were used to calculate the 
optimal number of topics associated with these infrastructures. Building 
on this, the needs were categorized into three layers encompassing 
eighteen indicators, as illustrated in Fig. 4.1. Appendix A featured the 
visualization of LDA process outcomes, which showcase the residents’ 
appeal terms across various topics, thereby highlighting residents’ 
concerns within each topic. 

In the safety and health needs layer, six key indicators have been 
identified: wiring hazards mitigation in the electricity system, water 
pipe bursts prevention and water quality and odor control in the water 
supply system, road safety in the transportation system, residential 
flooding prevention in the drainage system, and security hazards in 
others. These indicators represent the most urgent needs of residents 
following rainstorms. Failure to address these basic needs could pose a 

threat to residents’ lives. For example, security hazards on roads and in 
transportation frequently arise after heavy rainstorms, highlighting the 
critical importance of urban responses to these unsafe conditions. 
Addressing these safety and health needs is critical, as it demonstrates a 
city’s ability to maintain its basic quality of life following a rainstorm, 
taking precedence over all other needs. 

In the social needs layer, six key indicators includes: power outage 
avoidance in the electricity system, water outage avoidance in the water 
supply system, efficient resident travel in the transportation system, 
flooding mitigation in the drainage system, gas and signal outage 
avoidance in other systems. These indicators represent the social life 
needs of residents during recovery, highlighting how daily necessities 
are impacted by prolonged rainstorms. Failure to address these needs 
can significantly disrupt residents’ social lives, as exemplified by power 
outages resulting from intense precipitation. It is imperative for resi
dents affected by these outages to restore their social routines. 

The civic engagement layer comprises six advanced needs indicators: 
stable power voltage in the electricity system, stable water pressure in 
the water supply system, tidy road appearance, reliable bus schedules in 
the transportation system, clean and orderly living environments in the 
drainage system, and convenient elderly care services in various sys
tems. These indicators reflect the residents’ pursuit of advanced civic 
engagement in urban governance. For instance, the emphasis on 
roadway appearance signifies the demand for an aesthetically tidy urban 
environment. Addressing these advanced needs of urban residents en
ables the restoration of high-quality life in the city. This approach aligns 
with the "Build Back Better" strategy in disaster recovery (Fernandez & 
Ahmed, 2019; Dube, 2020). 

4.2. Urban performance curves during rainstorm recovery 

This section presents the overall performance curve over three 
rainstorm events in Beijing City (see Fig. 4.2). The first 60 mm rainfall 
event lead to a rapid decrease in residents’ satisfaction degree, reaching 
the lowest point on July 12, and gradually returning to baseline around 
July 16. The second 50 mm rainfall event on July 17 resulted in another 
decline, with a partial rebound before being interrupted by the third 35 
mm rainstorm shock. Following calculation, the city displayed urban 
resilience values of 0.52, 0.55, and 0.60 across three rainstorm events, 
indicating an increasing trend. The curve shows a sharp decline in urban 
performance after each rainstorm, followed by several days of recovery, 
highlighting the challenges in maintaining residents’ quality of life 

Table 4.1 
Needs indicators for infrastructure systems across three layers.  

Systems Basic needs layer Social needs 
layer 

Advanced needs layer 

Electricity Need 1: Wiring 
hazards mitigation 

Need 2: Power 
outage 
avoidance 

Need 3: Stable power 
voltage 

Water supply Need 4: Water pipe 
bursts prevention 
Need 5: Water 
quality and odor 
control 

Need 6: Water 
outage 
avoidance 

Need 7: Stable water 
pressure 

Transportation Need 8: Road 
safety 

Need 9: Efficient 
resident travel 

Need 10: Tidy road 
appearance 
Need 11: Reliable bus 
schedules 

Drainage Need 12: 
Residential 
flooding 
prevention 

Need 13: 
Flooding on 
roads mitigation 

Need 14: Clean and 
orderly living 
environments 

Gas and others Need 15: Safety of 
gas supply 
facilities 

Need 16: Gas 
outage 
avoidance 
Need 17: Signal 
outage 
avoidance 

Need 18: Convenient 
elderly care services  
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during crisis. 
The infrastructure-level results showed that the drainage, trans

portation, and electricity systems displayed resilience patterns similar to 
the overall urban resilience, showing an upward trend over time (see 
Fig. 4.4). During the initial rainstorm event, the drainage system, 
transportation and electricity system demonstrated resilience values of 
0.31, 0.47 and 0.71, respectively. The transportation showed a notable 
one-day lag compared to the drainage system. In addition, the gas and 
communication systems remained stable and did not exhibit fluctuations 
in performance curves. 

However, a notable anomaly was observed in the resilience value of 
the water supply system. The resilience scores for the first two events 
were 0.67 and 0.56, indicating decreasing resilience with slower re
covery and deeper impact during continuous rainstorms (see Fig. 4.3). 
The trend of the water supply system resilience is concerning and 
seemingly contradicts common sense. Upon analyzing the data, it was 
discovered that older residential areas in urban and suburban regions, 
along with some towns, relied on self-provided wells for water supply. 
This suggests that the municipal water supply pipe network refurbish
ment project has not been fully implemented in Beijing. As a result, these 
self-provided wells become vulnerable during the flood season, affecting 
water quality. The situation is exacerbated during rainstorm events. 

To enhance understanding of resilience across various spatial char
acteristics, we assessed differences in system performance and recovery 
time in downtown and suburban areas. T-test results reveal significant 
spatial disparities in the recovery times of both drainage and water 

supply systems (p < 0.001), as shown in Fig. 4.5. This indicates that 
recovery times for these systems were longer in the downtown area than 
in the suburban area. The disparity observed may stem from the com
plex, interconnected system structures in urban areas, which requires 
more time and resources for restoration. Inadequate drainage infra
structure was identified as the primary cause of the waterlogging issue. 
For example, in one case we studied, overflow from a sewage well, led to 
blockage of the sewage pipes by mud and sand. This is also corroborated 
by real-world observations. Following the July 11, 2021, rainstorms, the 
government reported approximately 500 waterlogged areas, about 67 % 
of which were in downtown areas. It took approximately 7 days to 
remove accumulated water in downtown areas, compared to 5 days in 
suburban areas. 

Nonetheless, the power supply systems were an exception. The re
covery duration did not significantly differ between regions, suggesting 
that the power supply coverage in the case is relatively comprehensive. 
This observation lends further support to the conclusion presented in 
Fig. 4.4, where the power supply system was shown to have the highest 
resilience value of 0.71. 

4.3. Dynamics of infrastructural responses to residents’ needs represented 
in hyperedges 

To discover infrastructural dynamic responses to critical residents’ 
needs, we developed the hypernetwork model by implementing the 
process in the methodology. Table 4.2 provides a detailed listing of the 

Fig. 4.1. Hierarchical residents’ needs of each infrastructure system.  

Fig. 4.2. Performance curves across three rainstorm events.  
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vertices and categories within the hypernetwork. The distribution of 
information across different layers follows a bottom-up logic, with each 
layer conveying diverse information and holding the potential to influ
ence the layers above. Fig. 4.5 illustrates the states and transitions of 
hyperedges from Time 1 to Time 8 during rainstorm recovery. 

We first employed structural attributes to assess the hypernetwork 
states. Hyperedges in the hypernetwork are shown in Table 4.3. The 
study utilized hyperedge degree, hyperedge similarity, and hyperedge 
distance for a scenario analysis during the rainstorm event T1–5. Fig. 4.6 
presents the computed results for each indicator. The analysis shows 

that, for hyperedges HE1–3 and 7–12, the hyperedge degree exceeds 10 
and the hyperedge similarity surpasses 0.5. The higher value signifies a 
stronger correlation between safety and health needs with other 
hyperedges, facilitating the centralized allocation of resources to fulfill 
the basic residents’ needs. In terms of hyperedge distance, a high value 
suggests a lengthy path between a specific hyperedge and others, 
complicating cross departmental resource coordination in rush-repair of 
different infrastructure systems. In the case, HE12,14 and HE23–25 have 
the maximum values exceeding 2, emphasizing specific operational re
quirements for certain needs, such as street light maintenance, and 

Fig. 4.3. Performance curves of infrastructure system across three rainstorm events.  

Fig. 4.4. Spatial Features of infrastructural recovery duration under rainstorms.  
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water supply operation. 
Subsequently, we utilize hyperclustering and evolution coefficients 

to pinpoint dynamic shifts with critical hyperedges, which are reflected 
in fluctuations in urban performance curves. The hyperclustering coef
ficient serves as an indicator of interconnections among hyperedges at 
various network layers. A higher value indicates a greater number of 
needs requiring resolution. Illustrated in Fig. 4.7, the hyperclustering 
coefficient progressively rose between July 10 and 12, peaking at 0.375. 
In contrast, from July 13 to 15, it declined to its lowest value of 0.3. This 
trend totally contrasts with the performance curve depicted in Fig. 4.3, 
indicating an inverse relationship between these trends. 

Moreover, the evolution coefficient investigates hyperedge trans
formations in the recovery process and reflects the gradient of change of 
the urban performance curve. For instance, the coefficient reaches 0.198 
by July 11, with the hyperedge {VN1, DS2, VB1} acting as the driving 
force in this transformation. During the recovery process, the coefficient 
increases to 0.237 by T4, with three driving hyperedges emerging: {VN1,

TS1,VB1}, {VN1 − TS2 − VB9}, and {VN1 − WSS1 − VB12}. This indicates a 
newly collaborated correlation of water and electricity systems during 
this phase. Thus, a higher coefficient corresponds to a quicker trans
formation of hyperedges, leading to a faster recovery of urban 
performance. 

Through capturing the hyperedges dynamic in Table 4.4, the study 
reveals what infrastructural resources should be allocate according to 
dynamic residents’ need priority as the restoration stage changing. The 
first rainstorm, which lasted from T1 to T5, led to a decline in residents’ 
satisfaction during T1–3 and rebounded during T3–5. The second and 
third rounds of the rainstorm subsequently occurred in T5–6 and T6–7, 
respectively. 

During the first rainstorm T1–5, the critical hyperedge is HE7 at T1–2, 
addressing residents’ need for stable power is the most pressing, 
necessitating repair resources for electricity system. In the subsequent 
phase T2–3, critical hyperedges shift to HE2,8,9, with critical needs 
changing to housing leaks and power outages, the focus of resource 
allocation should be the drainage and power supply systems. During 
phase T3–4, critical hyperedges transit to HE5,8,12, corresponding with a 
shift in critical needs towards water logging, the allocation should be the 
transportation and water supply systems. In the phase T4–5, critical 
hyperedges shift to HE6, reflecting a shift in critical needs to residential 
traffic, resource allocation should prioritize transportation systems. 
During the second rainstorm T5–6, the core hyperedges are HE3,8, the 
critical demands are power outage and waterlogging, necessitating a 
focus on restoring drainage and power supply systems. During the third 
rain T6–7, the critical hyperedge are HE8,11, emphasizing the need to 
prioritize the restoration of the water supply system. 

Accordingly, the engineering entities requiring repair in each infra
structure system at each stage are detailed in Table 4.5 and Fig. 4.8. 
During the first rainstorm, rush-repairs are needed for pipeline issues in 
the drainage system. Specifically, manhole cover issues constituted 26.9 
% of the problems in T2–3, and potholed roads represented 24.6 % in 
T3–4. During the second rain, the most critical issues are pipeline prob
lems in the drainage and water supply systems. Manhole cover issues 
accounted for 14.9 %, and private well problems for 19.3 %. During the 
third rain, supply pipe and private well issues in the water supply system 
were the most pressing, accounting for 21.8 % and 20.2 %, respectively. 

5. Discussion 

This study pioneers quantitative methods to model the dynamic 
interplay between residents’ needs and infrastructure response in the 
post-disaster recovery. By incorporating appeals and feedback data, we 
quantified the residents’ satisfaction degree within each infrastructure 
system, deriving an urban performance curve. The incorporation of 
hyperedge analysis facilitates a nuanced understanding of the intricate 
relationships, enabling adaptive resource allocation for infrastructure 
rush-repairs. The human-centric approach enhances urban resilience by 
addressing residents’ needs more effectively. 

5.1. Multi-layered structure of residents’ needs 

Exploring residents’ needs during recovery reveals a multi-layered 
structure using empirical data-driven methods, resonating with theo
retical frameworks by Gilbert et al. (2015), Zhao et al. (2022), and 
Cardoso et al. (2022). This study further observed that residents’ appeals 
follow a pyramid pattern of hierarchy, ranging from basic needs to so
cietal and civic concerns during post-disaster periods. Specifically, 
under normal daily conditions, residents’ appeals are evenly distributed 
across the three layers, each accounting for one-third of the total. 
However, during heavy rainfall events, a notable shift occurs in this 
distribution: Safety and health needs surge to 50 %, while social needs 
maintain at one third, and advanced civic needs decrease to 20 %. This 
transformative pattern underscores a critical insight—during crises, 
basic needs assume paramount importance, forming the foundational 
tier of the pyramid. Social and advanced needs subsequently follow in 
significance. 

The observed resilience in urban infrastructure substantiates and 
reinforces this hierarchical shift. Notably, the diminished resilience of 
drainage and transportation systems is primarily attributed to the 
heightened vulnerability of road safety and residential flood pro
tection—both essential components of basic needs during rainstorms. 
This hierarchy plays a pivotal role in guiding urban recovery strategies, 
ensuring that resource allocation aligns seamlessly with the prioritiza
tion of residents’ needs. Recognizing the prominence of basic needs 
during crises is imperative for crafting effective recovery plans and 
efficiently deploying resources to safeguard essential aspects of urban 
life. 

5.2. Dynamic urban performance curve 

The urban performance curve tracks the evolution of residents’ needs 
during rainstorms from appeal report to resolution, offering a dynamic 
view of urban performance dynamics. Unlike static indicators adopted 
in prior studies (Podesta et al., 2021; Pan et al., 2022), this approach 
measures satisfaction levels for ongoing needs, emphasizing the 
importance of responding to evolving needs. Additionally, our results 
revealed infrastructure-level resilience trends, guiding adaptive recov
ery strategies to enhance overall urban functionality. During the three 
rainstorms, the drainage, transportation, and electricity systems 
exhibited an upward trend in resilience. Nevertheless, a 
counter-intuitive resilience pattern manifested in the water supply sys
tem, characterized by decreasing resilience, slower recovery, and deeper 

Table 4.2 
Vertices and categories in the hypergraph.  

Network Vertex Categories 

Residents’ needs VN1–3 Safety and health, social livelihood, and Civic 
engagement 

Urban 
response 

DS1–4, 
TS1–4, 
ES1–4, 
WSS1–5 

Topics of urban response in each infrastructure 
system 

Built 
environment 

VB1 Manhole cover, rainwater grate, drainage 
pipeline, et al. 

… … 
VB5 Collapsed road, pothole, damaged, muddy road, 

et al. 
… … 
VB8 Electric wires, transformer, electric box, circuit, 

high-voltage line 
… … 
VB13 Burst pipe, leaking pipeline, water meter, et al. 
VB14 Private well, associated pipeline construction, 

et al.  

Z. Zhao et al.                                                                                                                                                                                                                                    



Sustainable Cities and Society 106 (2024) 105366

10

Fig. 4.5. Hyperedge shifts influenced by rainstorm events (T1 to T8). Note: T1 represents the rainstorm occurrence time; and T8 represents the recovery time of all 
rainstorm events. 
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impact in rainstorms. This unexpected phenomenon can be attributed to 
the incomplete renovation of city’s water supply pipelines that year. The 
inadequacies in the infrastructural led to self-provided wells exceeding 
their capacity during continuous rainstorms, resulting in water quality 

issues and subsequent water outages. 

5.3. Hyperedge analysis for adaptive allocation 

Hyperedge analysis uncovers the dynamic interplay between 
evolving residents’ needs and critical infrastructure systems, enabling 
tailored emergence repairs, that is, shifting focus based on evolving 
needs during recovery. Demonstrated in our findings, initially, the 
repair efforts should be centered on addressing pipeline and road issues. 
However, as the recovery process progressed, the focus should be shifted 
towards repairs in housing, transportation, and water supply. This shift 
emphasizes the crucial necessity for adaptable and responsive disaster 
management strategies capable of effectively address changing needs 
during crises. 

Moreover, our observations highlight that residents often identify 
issues such as damaged rainwater grates or potholed roads before these 

Table 4.3 
Hyperedges in the hypernetwork.  

Hyperedge Residents’ needs 
Sub-Network 

Urban Response 
Sub-Network 

Built environment 
Sub-Network 

HE1 VN1 DS1 VB1 

HE2 VN1 DS2 VB1 

… … … … 
HE6 VN3 DS4 VB3 

… … … … 
HE24 VN2 WSS4 VB13 

HE25 VN3 WSS5 VB14  

Fig. 4.6. Hyperedge degree, hyperedge similarity and distance during the recovery.  

Fig. 4.7. Hyperclustering and hyperevolution coefficients during the recovery.  
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problems exacerbate during rainstorms. The resident-driven awareness 
functions an early warning system, enabling quicker responses from 
urban management teams—a concept we team “humans as sensors”. The 
dynamic infrastructural responses strategies not only ensure the main
tenance of urban functionality during crises but also contribute to the 
early detection of potential problems that could adversely affect urban 
life. 

Our hypernetwork analysis also corresponds with Max-Neef’s Needs 
Theory, enhancing various need satisfiers to meet residents’ needs 
(Max-Neef, 1991). This theory emphasizes the dimensions of being, 
interacting, doing, and having, to align urban resilience strategies with 
human needs. Resonating with this theory, intervention strategies 
should adjust residents’ expectations and reshape the needs pyramid 
(being), enhance urban performance through executing efficient 
deployment and allocation during disasters (interacting and doing), and 
strengthen the physical assets in the urban environment (having). 

5.4. Limitations and future research directions 

This study acknowledges several limitations. Firstly, the practical 
application of hyperedges for dynamic resource reallocation is con
strained by governmental coordination expenses and the costs incurred 
in implementing these adaptive infrastructural rush-pair strategies. 
While our findings offer valuable insights, the feasibility and scalability 
of such dynamic approaches should be evaluated in light of budgetary 
constraints and resource availability. 

Secondly, the absence of social demographics in our analysis repre
sents a limitation in understanding the nuanced impact of urban natural 
disasters. Future studies are encouraged to incorporate individual per
spectives and consider the influence of social demographics on resi
dents’ needs and recovery experiences. Comprehensive field studies 
would be instrumental in validating and expanding upon our current 
findings. 

Thirdly, regional characteristics play a crucial role in shaping urban 
resilience, and our framework’s direct transferability to other areas 
warrant considerations. However, data from both downtown and sub
urban areas are leveraged in this study to assess performance and re
covery disparities to increase the generalization of our findings. In the 
future, a more detailed spatial analysis is encouraged for a 

comprehensive understanding of regional variations. Benefiting from 
that, the applications of our framework could account for unique 
regional factors, thereby ensuring its effectiveness in diverse 
geographical contexts. 

6. Conclusion 

In this study, a research framework was constructed to quantitatively 
associate emergency governance and dynamic infrastructure repair with 
the residents’ needs evolution in post-disaster recovery, providing 
empirical insights for resource allocation in infrastructure rush-repair 
situations. Utilizing LDA topic modeling, this study categorized resi
dents’ needs into three layers: safety and health, social livelihood, and 
civic engagement, forming a basis for the urban resilience assessment. 
Then, we captured the dynamic evolution of these needs, reflecting 
changes in priorities and satisfaction levels, thereby effectively depict
ing urban performance curves and evaluating urban resilience. Finally, 
through hyperedge network analysis, our approach uncovered the 
infrastructural response mechanisms driving these evolving needs. This 
approach offers vital insights into how urban infrastructure and resi
dents’ well-being interact in the aftermath of disasters. By performing 
empirical study on real-life datasets comprising 220,567 records from 
residents’ appeals in rainstorms of Beijing city, we validated our pro
posed framework. 

The findings of this study offer several recommendations for gov
ernment urban planning agencies to optimize dynamic resource allo
cation during the varying post-disaster stages. Firstly, agencies should 
formulate adaptive policies for critical infrastructural services during 
peak demand times, ensuring that resource allocation aligns seamlessly 
with the prioritization of residents’ needs. Secondly, special attention 
should be given to address some counter-intuitive resilience patterns, 
such as those observed in the water supply system, by developing 
tailored recovery strategies. Finally, the innovation of our model, sup
ported by hyperedge network analysis, lies in its potential for dynamic 
behavior analysis and for fostering a long-term understanding of the 
interplay between residents’ needs and infrastructural responses. This 
approach, rooted in a bottom-up analysis of human needs and public 
perceptions, aligns closely with the principles of sustainability and 
urban transformation. We offer a valuable framework for assessing and 

Table 4.4 
Relationships between residents’ needs, urban performance, and infrastructures based on critical hyperedges.   

T1–2 T2–3 T3–4 T4–5 T5–6 T6–7 

Critical Hyperedge HE7 HE2, HE8–9 HE5, HE8, HE12 HE6 HE3, HE8 HE8, HE11 

Residents’ needs Advanced needs social needs Basic needs social needs Advanced needs social needs Basic needs 
Urban 

performance 
Unstable power 

voltage 
power outage, grid security, 

waterlog, house leaks 
waterlog, residential traffic, 

water outage 
residential 

traffic 
power outage, 

waterlog 
water quality 

safety 
Infrastructure 

system 
Electricity Drainage, Electricity Transportation, Water supply Transportation Drainage, 

Electricity 
Water supply  

Table 4.5 
The changing entities of each infrastructure system.  

Infrastructures Entities T1–2 T2–3 T3–4 T4–5 T5–6 T6–7 

Drainage system manhole cover 11.2 % 26.9 % 20.5 % 17.1 % 14.9 % 9.3 % 
sewage well 7.6 % 37.3 % 18.4 % 10.8 % 17.8 % 8.1 % 

Transportation system Potholed road 15.7 % 14.9 % 24.6 % 20.3 % 9.6 % 14.9 % 
Collapsed Road 8.8 % 15.9 % 24.8 % 23.9 % 11.5 % 15.0 % 

Electricity system Circuit 16.8 % 35.2 % 12.8 % 13.1 % 10.1 % 12.1 % 
switch 19.5 % 31.4 % 16.8 % 11.9 % 14.1 % 6.5 % 

Water supply system Supply pipe 10.6 % 12.0 % 21.3 % 18.5 % 15.7 % 21.8 % 
Private well 15.4 % 15.4 % 20.5 % 9.1 % 19.3 % 20.2 %  
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enhancing urban resilience from a human-centric perspective, formu
lating responsive infrastructural interventions, thus paving the way for a 
more resilient urban future. 
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